famafrench.utils.get_statsTable¶
-
famafrench.utils.get_statsTable(dType, dFreq, df, dates_as_index=True, ptiles=None)[source]¶ Construct detailed tables with summary statistics.
- Parameters
dType (str) –
Dataset type of the portfolios. Possible choices are:
ReturnsFactorsNumFirmsCharacs
dFreq (str) –
Observation frequency of the portfolios. Possible choices are:
D: dailyW: weeklyM: monthlyQ: quarterly (3-months)A: annual
df (pandas.DataFrame) – Dataset w/ portfolio returns (which may include factor returns), number of firms in each portfolio, or average anomaly portfolio characteristics for a given portfolio sorting strategy.
dates_as_index (bool) – Flag determining whether
dfhas apandas.DatetimeIndexindex (dates_as_index = True). Otherwise,dates_as_index = False.ptiles (list, float, default None) – List of percentiles (in decimal format) included as part of output results. If
None, thenptiles = [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99].
- Returns
statsTable –
Summary statistics of the dataset including the following:
number of observations
pandas.DataFrame.count()sample mean
pandas.DataFrame.mean()sample standard deviation
pandas.DataFrame.std()sample min
pandas.DataFrame.min()sample max
pandas.DataFrame.max()sample skewness
pandas.DataFrame.skew()sample kurtosis
pandas.DataFrame.kurtosis()sample mean absolute deviation
pandas.DataFrame.mad()sample percentiles
numpy.percentile()
If
dates_as_index = True, then the table also includes the starting and ending date for each observation type.- Return type